ν

Form INV-2 EMISSION POINT DESCRIPTION

Duplicate this form for EACH Emission POINT

1) Company/Facility Name	ACM	CORP	ORATIO	N	1a) Form INV-	2 Page	2	of	3						
2) Emission Point Number	EP2														
3) Emission Point Description	SPR/	Y PAIN	т воот	H STACK											
4) Is this stack/vent used as an Emergency Bypass Stack?	No		Yes												
If YES, for which stack(s)? List I	mission Point	Nos.:													
			EMISSIO	N POIN	T INFORMATIO	N									
5) Emission Point Type															
Stack/Vent															
Fugitive (specify)															
Other (specify)	Other (specify)														
6) Stack Shape and Dimensions	5) Stack Shape and Dimensions: (interior dimensions at exit point)														
Circular Diameter:		i	inches												
Rectangular Dimensions:		i	inches X			inches									
Other Dimensions		i	inches												
7) Stack Height Above Ground	18	feet													
8) Does the Emission Point hav	e a rain cap (or	anything els	e) which obs	structs t	the flow of gase	es leaving th	e Emission Poin	t, or a hor	izontal di	scharge?					
No YES (spec	fy):	RAIN	CAP												
		ç	9) COMPOST	TION OF	EXHAUST STE	REAM									
Exhaust Stream Characteristics		mission Poin on of Exhau		Units	Units of Measure										
a) Flow Rate	18	18,000 ⊠ ACFM □ SCFM													
b) Temperature	ar	nbient		Degr	ee Fahrenheit										
		1	10)	BYPAS	S STACKS										
Bypass Stack – Emission Point No.		Bypass St Description	tack on												
Bypass Stack – Emission Point No.		Bypass St Description													
·	11) L	IST OF EMIS	SION UNITS	VENTI	NG THROUGH	THIS EMISSI	ON POINT								
Emission Unit No.			Emission Unit No. Emission Unit No.												
EU2															
					1										

Duplicate this form as needed

TYPE ALL INFORMATION

(DNR Form 542-4004. December 24, 2007)

ν

Form INV-5 CALCULATIONS

Duplicate this form for each Form it will accompany in the Questionnaire

		_					accompany in the c	<u>tuestioiiii</u>	in C	
1)	Company/Facility Name	ACME CORPORATION					1a) Form INV-5 Page	2	of	5
2)	Emission Point No.	EP2	3)	Emission Unit	No.	EU2	2			
4)	Calculations are provided in	n support of information reported on Form	INV	7 - <mark>3</mark> 🔀	4 [for the Emission Point a	nd Emissi	on Unit list	ed above.
5)	Emissions Calculations									

ACME Corporation applies a base coat and a top coat to each wagon in the same spray booth. The paint comes in five gallon pails and is sprayed directly from the container with no thinning or mixing at the facility. The paint booth has an Iowa Air Quality construction permit with a paint usage limit of 4,000 gallons per year. ACME Corp only sprayed 1,300 gallons per year (500 gallons of basecoat and 800 gallons of top coat). ACME Corp. uses a high volume low pressure (HVLP) spray gun with a maximum capacity of 7 gallons/hr. The filter used in the booth has a 95 percent particulate removal efficiency.

Material balance (also known as mass balance) utilizes the raw material usage rate to estimate the amount of pollutant emitted. In this method, emissions are estimated as the difference between material input and material output across a process. This method is typically used in surface coating processes. Information regarding the amount of pollutants in a material can be found on the material safety and data sheet (MSDS).

Most material balances assume that all solvent used in a process will evaporate to become air emissions somewhere at the facility. In these cases, emissions equal the amount of solvent contained in the surface coating.

From information found on paint MSDS the top and base coats have the following characteristics and HAP components: (ref HAP/HAP list)

	Top Coat	Base Coat
Paint Weight (lbs/gal)	8.75	7.21
% VOC	25	42
% Solids	75	58
% Xylene	8	2
% Toluene	0	15

Note: All percents are weight percents and expressed as percent of total paint weight

POTENTIAL EMISSIONS:

Step 1 - Determine the maximum amount of paint that could be used

Since ACME Corp. has a usage limit of **4,000** gallons per year, this is the maximum amount of paint that could be used. If they didn't have this limit, the maximum usage would be calculated by taking the maximum gun capacity (7 gallon/hr), and multiplying by 8,760 hours per year.

 $(7 \text{ gallon/hr}) \times (8,760 \text{ hrs/yr}) = 61,320 \text{ gallons/yr}$

Step 2 - Calculate the yearly potential VOC and HAP emissions

To calculate the maximum amount of VOC and HAP emitted from this spray booth in one year, the highest amounts of each constituent from the base or top coat must be used.

In this case the top coat $VOC = 0.25 \times 8.75 \text{ lbs/gal} = 2.19 \text{ lbs VOC/gal}$.

The base coat $VOC = 0.42 \times 7.21$ lbs/gal = 3.03 lbs VOC/gal, which is the higher VOC content.

First, multiply the greatest VOC density (base coat 3.03 lbs/gal) by the maximum paint used (4,000 gallons). To convert it to tons per year divide the answer by 2,000 lbs/ton.

(Density lbs/gal) x (Max. annual paint usage gal/yr) x (1 ton/2,000 lb) = 3.03 lbs/gal x 4,000 gal/yr x 1ton/2,000 lbs = 6.06 tons/yr

Form INV-5 CALCULATIONS

Duplicate this form for each Form it will accompany in the Questionnaire

_							accompany in the s	COCCIONNIC	4110					
1)	Company/Facility Name	ACME CORPORATION					1a) Form INV-5 Page	3	of	5				
2)	Emission Point No.	EP2	3)	Emission Un	it No.	EU	2							
4) Calculations are provided in support of information reported on Form INV - 3 2							for the Emission Point a	nd Emissi	on Unit list	ed above.				
5)	Emissions Calculations													

POTENTIAL EMISSIONS (CONTINUED)

To calculate the maximum emissions of each HAP, use the same formula, but in each case use the paint with the highest density of the HAP.

```
Xylene = (8.75 \text{ lb/gal}) x (4,000 \text{ gallon/yr}) x (0.08) x (1 \text{ ton/2,000 lbs}) = 1.40 tons/yr Toluene = <math>(7.21 \text{ lb/gal}) x (4,000 \text{ gallon/yr}) x (0.15) x (1 \text{ ton/2,000 lbs}) = 2.16 tons/yr
```

Step 3 - Calculate the yearly potential $PM_{2.5}$ and PM_{10} emissions. For surface coating, $PM_{2.5}$ and PM_{10} are assumed to be equal. To calculate $PM_{2.5}$ and PM_{10} emissions the spray transfer efficiency (TE) of the spray gun and the control efficiency (CE) of the filter must be inserted in the formula used to calculate the VOC and HAP emissions. The transfer efficiency is the percentage of paint from the gun that actually adheres to the part being painted. The HVLP gun has a transfer efficiency of 65%, and the filter control efficiency is 95%. Refer to Appendices C and D or other supporting documentation for guidance on transfer and control efficiencies.

In ACME Corp.'s painting process 65% of the paint being sprayed hits the part and the remaining (35%) goes in the exhaust stream. The filters capture 95% of the solids in the exhaust and the remaining (5%) is discharged out the stack.

(Density lb/gal) x (Max. annual paint usage gal/yr) x (Max.% solid) x (1-TE) x (1-CE) x (1 ton/2000 lbs)

(8.75 lb/gal) x (4,000 gal/yr) x (0.75) x (1-0.65) x (1-0.95) x (1 ton/2,000 lbs) = 0.23 tons/yr

Step 4 - Calculating maximum hourly emissions

To calculate maximum hourly emissions multiply the maximum gun capacity by the weight of the highest constituent, considering all paints used. The lb/gal density for each paint, multiplied by the percent of the pollutant in each paint equals a pound per gallon emission factor. To calculate the hourly PM_{10} emissions the transfer efficiency and filter control efficiency must be included in the formula.

```
(Max. Gun Capacity gal/hr) x (Density lbs/gal x Max. % VOC/HAP) = VOC or HAP (Max. Gun Capacity gal/hr) x (Density lbs/gal x Max. % solids) x (1-TE) x (1-CE) = PM<sub>10</sub>
```

```
VOC s = (7 \text{ gal/hr}) x (7.21 \text{ lb/gal } x 0.42) = \mathbf{21.20 \text{ lb/hr}}

Xylene = (7 \text{ gal/hr}) x (8.75 \text{ lb/gal } x 0.08) = \mathbf{4.9 \text{ lb/hr}}

Toluene = (7 \text{ gal/hr}) x (7.21 \text{ lb/gal } x 0.15) = \mathbf{7.57 \text{ lb/hr}}

PM<sub>2.5</sub> = (7 \text{ gal/hr}) x (8.75 \text{ lb/gal } x 0.75) = 45.94 \text{ lb/hr} uncontrolled x
```

 $PM_{2.5} = (7 \text{ gal/hr}) x (8.75 \text{ lb/gal } x 0.75) = 45.94 \text{ lb/hr} \text{ uncontrolled } x (1-0.65) x (1-0.95) =$ **0.80 \text{ lb/hr} controlled** $<math>PM_{10} = (7 \text{ gal/hr}) x (8.75 \text{ lb/gal } x 0.75) = 45.94 \text{ lb/hr} \text{ uncontrolled } x (1-0.65) x (1-0.95) =$ **0.80 \text{ lb/hr} controlled**

Step 5 – Calculate the emission factor

To determine the emission factor to report in Box 15, divide the lb/hr uncontrolled potential emissions by the gallons/hr capacity.

(lb/hr emissions uncontrolled) x (hr/gallons) = lb/gal

```
VOC s = (21.20 \text{ lb/hr}) x (hr/7 gal) = 3.03 \text{ lb/gal} Xylene = (4.9 \text{ lb/hr}) x (hr/7 gal) = 0.7 \text{ lb/gal} Toluene = (7.57 \text{ lb/hr}) x (hr/7 gal) = 1.08 \text{ lb/gal} PM<sub>2.5</sub> = (45.94 \text{ lb/hr}) x (hr/7 gal) = 6.56 \text{ lb/gal} PM<sub>10</sub> = (45.94 \text{ lb/hr}) x (hr/7 gal) = 6.56 \text{ lb/gal}
```

Form INV-5 CALCULATIONS

Duplicate this form for each Form it will accompany in the Questionnaire

1)	Company/Facility Name	ACME CORPORATION					1a) Form INV-5 Page	4	of	5		
2)	Emission Point No.	EP2	3)	Emission Uni	it No.	EU2	2	•	•			
4)	Calculations are provided in	n support of information reported on F	orm INV	3 🗌	4 🗵		for the Emission Point a	and Emission Unit listed abo				
5)	Emissions Calculations											
St	ep 6 - Calculating annu	al actual VOC and HAP emissi		e the emissi	ons fro	om ea	ach coating then add	them tog	gether.			
(P	aint used gal/yr) x (Pain	at Weight lb/gal x Pollutant %)	x (1 ton	/2,000 lbs)								
		=										
					• =	1.63	tons of VOC					
					'	0	32 tons of Xylene					
	Calculations are provided in support of information reported of Emissions Calculations ANNUAL ACTUAL EMISSIONS: Itep 6 - Calculating annual actual VOC and HAP emission calculate annual VOC and HAP emissions you must be calculate annual VOC and HAP emissions you must be calculate annual VOC and HAP emissions you must be calculate annual VOC and HAP emissions you must be calculate annual VOC and HAP emissions you must be calculate annual VOC and HAP emissions you must be calculate annual VOC and HAP emissions you calculate the coat: (500 gal) x (8.75 lb/gal x 0.25) = 1,70 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.042) = 1,70 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.00) = 1,70 (COC - Base Coat: (500 gal) x (8.75 lb/gal x 0.00) = 1,70 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.00) = 1,70 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.00) = 1,70 (COC - Base Coat: (500 gal) x (8.75 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.58) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.58) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (7.21 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (8.75 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (8.75 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (8.75 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (8.75 lb/gal x 0.75) x (1-0.65) x (1.05 (COC - Base Coat: (500 gal) x (8.75 lb/gal x 0.75) x (1.05 (COC - Base Coat: (500 gal) x (8.75 lb/gal x 0.75) x (1.05 (COC - Base Coat: (500 gal) x (8.75 lb/gal x 0.75) x (1.05 (COC - Base Coat: (
To	calculate the yearly PN		me forn	nula is used	, but ti	ransfe	er efficiency and con	trol effic	iency mı	ıst be		
							= 0.02 tons					
								PM _{2.5} ar	nd PM ₁₀			
in	to account to determine	the maximum constituents of e										
To	determine the emission		ide the	total tons e	missio	ns by	the gallons used and	l convert	tons to			
[(1	ons) / (gallons)] x (2,00	00 lbs/ton) = lb/gal										
	Xylene = Toluene PM _{2.5} = (= (0.32 tons/1,300 gallons x 2,00 = (0.27 tons/1,300 gallons x 2,00 (0.07 tons/1,300 gallons x 2,000	00 lbs/to 000 lbs/to 0 lbs/tor	f(x) = 0.491 f(x) = 0.42 f(x) = 0.42 f(x) = 0.491	b/gal lb/gal 5) x (1-							

Form INV-3 EMISSION UNIT DESCRIPTION – POTENTIAL EMISSIONS

Duplicate this form for EACH Emission UNIT

1)	Company/F	acility Name	F	CME	C	ORP	ORATIO	18	a) Fo	orm INV-3 Pa	ige 2	2		of	3			
2)	Emission P	oint Number	E	EP2														
						EMISS	SION UNIT (P	ROCESS)	IDENTIFICATION &	DESCRI	IPTIC	N						
3)	Emission U	nit Number		U2														
4)	SCC Number	er	4	0202	50	1												
5)	Description	of Process	S	SPRA	Υ	PAIN	TING							_				
6)	Date of Cor		8/1/19	985		7)	Date of Inst	allation	8/1/1985	8)	Da	ate of Modifica	ation					
9)		al – OR Fuels ase for EACH		t	P	PAINT	•											
10)	Federally E	nforceable Lin	nit		4	,000	GALLON	IS PER	YEAR									
11)	Permit or R	ule Establishi	ng Limit		_		CONSTRUCTION PERMIT 85-A-036											
12)	Maximum H	lourly Design	Rate		7	.0 GALLONS Per Hour												
13)																		
Control Equipment Number Cel Control Equipment Description PANEL FILTER																		
		•	-	PA	PANEL FILTER													
Control Equipment Number Control Equipment Description POTENTIAL EMISSIONS																		
Control Equipment Description POTENTIAL EMISSIONS																		
14 15 Air Pollutant Emission				16			17	18	19	20		21		22	23 Detertial Ann			
		Eı	Emission Factor Units			Source of Emission Factor S		Potential Hourly Uncontrolled Emissions (Lbs/Hr)	Combined Control Efficiency		Transfer Efficiency	Potential Hourly Controlled Emissions (Lbs/Hr)		ed	Em	tial Annual nissions ons/Yr)		
	PM-2.5	6.56	LE	B/GAL	-	MASS BAL			45.92	95	65		0.8			0.23		
	PM-10	6.56	LE	3/GAL	-	MASS BAL			45.92	95 65		65	0.8			0.23		
	SO ₂																	
	NOx																	
	voc	3.03	LE	3/GAL			SS BAL		21.21							6.06	j	
	со																	
	Lead																	
А	mmonia																	
РО	TENTIAL E	MISSIONS -	- Individ	lual HA	Ps	and ad	ditional reg	julated ai	r pollutants – list	each ii	ndiv	idual polluta	ant n	ame in	Colu	mn 14		
Х	(ylene	0.7	LE	3/GAL	_	MA	SS BAL		4.9							1.40)	
T	oluene	1.08	LE	3/GAL	-	MA	SS BAL		7.56							2.16	;	

Duplicate this form as needed TYPE ALL INFORMATION (DNR Form 542-4001. December 24, 2007)

^{*}Sources of Emission Factors: CEM .. Stack Test .. Mass Balance .. AP-42 .. WebFIRE.. TANKS.. EPA-L&E .. Worksheet .. Other - Specify

Form INV-4 EMISSION UNIT DESCRIPTION – ACTUAL EMISSIONS

Duplicate this form for EACH

	Forn	n INV-4 EIVII	551Ur	N UNIT DESC	SKIPTIC	N – AC	IUALE		SION	>			sion UN		LACII	
1)	Company/Fac	ility Name	ACN	IE CORPOI	RATIO	N				1a) Foi	rm INV-4	•	2	of	f 3	
2)	Emission Yea	r	2008	3)	Emission	Point Num	nber		EP2							
				EMIS	SION UNIT	– ACTUAL	OPERATION	ONS AN	ND EMI	SSIONS	3					
4)	Emission Unit	t Number	EU2		5) SCC Number 40202501											
6)	Description of	f Process	SPR	AY PAINT	AY PAINT BOOTH											
						ACTUAL	THROUGH	PUT								
7)	Raw Material		F	PAINT												
8)	Actual Throug	ghput – Yearly To	tal 1	,300		9)	Units R	aw Mat	erial	GAL	LON	S				
		100			-	al Operating		edule		40) 5				40) 144 - 1		
	LANL MAD	10) Perc		otal Operating Ti								13) Weeks/Quarter				
	JAN – MAR			25 25	8 5								3			
	APR – JUN			25 25			3				5				3	
	JUL – SEP			25 			3				5				3	
14	OCT - DEC			25	AID DOL		NTPOL E	OLUBER	ENIT (O		5			1	3	
14)		ipment Number		CE2	AIR PUL	LUTION CC	MIRUL E	WOI PINI	ENT (CI	=)						
		ipment Descripti	on	PANEL FILTER												
	•	ipment Number	J11	PANEL FILIEK												
	•	-														
	Control Equ	ipment Descripti	on			ACTUAL E	MISSIONS									
	15	16		17	1	18	19		0	20	1	21			22	
	Air Pollutant	Emission Factor		ssion Factor Units	Source of Emission Ash or Sulfur % Combined Control Efficiency Transfer Effi							ns/Yr)				
	PM-2.5	6.15	LB	/GAL	MASS	BAL			95		6	65		0.07		
	PM-10	6.15	LB	/GAL	MASS	BAL			95 65				0.07			
	SO ₂															
	NOX															
	voc	2.51	LB	/GAL	MASS	BAL								1.63		
	со															
	Lead															
	Ammonia															
,	ACTUAL EMIS	SSIONS – Indiv	idual H	IAPs and additi	ional regu	ılated air _l	pollutant	s – list	each	individ	lual pol	lutant r	ame in	Column	า 15	
	Xylene	0.49	LB	/GAL	MASS	BAL								0.32		
	Toluene	0.42	LB	/GAL	MASS	BAL						0.27				

^{*}Sources of Emission Factors: CEM .. Stack Test .. Mass Balance .. AP-42 .. WebFIRE.. TANKS.. EPA-L&E .. Worksheet .. Other – Specify

Duplicate this form as needed

TYPE ALL INFORMATION

(DNR Form 542-4002 December 24, 2007)